5.3V电池首次实现稳定循环

您现在的位置:首页 > 佳创铭资讯 > 公司新闻 > 5.3V电池首次实现稳定循环

5.3V电池首次实现稳定循环

 一、为什么研究高压电池?

 
即将到来的5G通讯,物联网,以及电动车将大大提高人们对电池能量密度的需求。目前锂离子电池由于其较低的自放电以及可以忽略的记忆效应,已经占据了移动电源的绝大部分市场。为了进一步提高锂离子电池的能量密度主要有两条途径:1,提高电池的比容量;2,提高电池的工作电压。经过十多年的发展,基于锂离子嵌入脱出反应的锂离子电池电极材料几乎已经达到了其比容量的理论极限。因此发展具有更高工作电压的正极材料成为最有效的进一步提高电池能量密度的途径。
 
 
 
二、高压正极材料及其面临的问题有哪些?
 
最近几年有很多研究关于5V正极材料,例如LiNi0.5Mn1.5O4 以及LiCoPO4,然而它们的放电电压相对于Li+/Li仅仅只有4.7V 与4.8V并未达到5V, 而且并没有一个稳定的电解液体系可以维持其长期稳定的充放电循环。尖晶石结构材料LiCoMnO4 拥有最高达5.3V的放电电压平台,以及145mAh/g的比容量,这些使其成为非常有应用前景的高电压正极材料,然而目前并没有一种电解液体系可以承受其相对于Li+/Li 5.3V的高电势。尽管过去十年有一些关于该类材料的研究,但是在这些报道中,该材料最多只有75%的理论容量表现出来,而且稳定的充放电循环小于100圈。其次这些报道中,该材料通常都含有大量Mn3+的存在,这使其在4.0V左右有一个平台从而降低其能量密度。另外可以满足其5.3V高电势的电解液通常都无法在低电势下稳定或者生成稳定的SEI,这就导致石墨,硅,锂金属等负极材料无法应用,从而失去了高电压正极材料的增加全电池电压的优势。
 
 
 
三、作者如何实现了电池5.3V高压?
 
最近,美国马里兰大学王春生教授(通讯作者)课题组以及美国布鲁克海文国家实验室的苏东以及杨晓青博士等人,利用两步合成法合成了没有Mn3+存在的LiCoMnO4正极材料,并且首次实现了该材料理论容量的可逆充放。并且通过非原位XANES, EXAFS谱图以及原位XRD探究了其充放电过程中锂离子的嵌入脱出机理。其设计的电解液体系(1M LiPF6 + 0.02M LIDFOB in FEC/FDEC/HFE) 拥有0-5.5V的电化学稳定窗口。基于此, 首次实现了循环稳定的5.3V锂金属电池(Li//LiCoMnO4)以及5.2V的锂离子电池(Graphite//LiCoMnO4)。该文章发表在国际顶级期刊Chem上。陈龙(马里兰大学),范修林(马里兰大学),胡恩源(布鲁克海文国家实验室)为本文共同第一作者。
 
 
 
3.1 电解液的选择
 
 
 
 
3.2 LiCoMnO4高压正极的晶体结构
 
 
 
XRD图谱表明LiCoMnO4为立方Fd3m尖晶石结构。锂离子可以在其三维通道中快速迁移。较强的(220)峰表明有一些过渡金属元素占据了四面体8a位置。同时,其中(001)和(020)峰表明产物中有Li2MnO3相的存在,经过精修可以发现其大约占7%。HRTEM 以及HR-HAADF-STEM也进一步表明了LiCoMnO4的尖晶石结构,同时在HAADF-STEM图中也发现了Li2MnO3相的存在。
 
 
 
3.3 LiCoMnO4的电化学性能及循环过程中的结构变化
 
 
 
图3A显示,该材料在5.0-5.3V以及4.7-4.9V有两个放电平台,其放电比容量达到了152mAh/g, 其超出理论容量的部分来源于Li2MnO3。这使得该材料具有720Wh/kg的高能量密度。XANES图谱表明,在充放电过程中,只有Co经历了Co3+与Co4+的价态变化,Mn元素并没有价态变化,这表明材料的容量全部来源于Co价态变化. FT EXAFS图谱也进一步证实了材料优异的可逆性。
 
 
 
佳创铭资讯
Copyright © 2010-2013 深圳市佳创铭科技有限公司 All Rights Reserved   粤ICP备13059220号-1
地址:深圳市龙岗区龙城街道龙西社区白沙水新区40号2楼 电话:0755-89565512 传真:0755-89250381
本站热搜关键词:动力电池|平衡车电池|电动滑板车电池|扭扭车电池|代步车电池|18650动力电池|电子烟电池|思维车电池|进口电池|电动自行车电池
  技术支持:龙岗网站建设

QQ在线客服

  • 销售部
  • 点击这里给我发送消息
  • 客服部
  • 售后部